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ANALYTICAL SOLUTION FOR THE WIND-DRIVEN CIRCULATION

IN A LAKE CONTAINING AN ISLAND
by Marvin E. Goldstein and Richard T. Gedney

Lewis Research Center

SUMMARY

An analysis has been carried out to determine analytically the effect of an island on
the wind driven currents in a shallow lake (or sea). A general analysis is developed that
can be applied to a large class of lake and island geometries and bottom topographies.
Detailed numerical results are obtained for a circular island located eccentrically or
concentrically in a circular lake with a logarithmic bottom topography. It is shown that
an island can produce volume flow (vertically integrated velocities) gyres that are com-
pletely different from those produced by a normal basin without an island. These gyres
in the neighborhood of the island will produce different velocity patterns, which include
the acceleration of flow near the island shore.

INTRODUCTION

Lake currents are very important in determining what chemical and biological
changes will take place in a lake since they control the distributions of sediment and pol-
lution which have been introduced. % is, therefore, important to be able to predict these
currents,

The main source of motion in the oceans and lakes are the winds. When the winds
act on the surface of a deep body of water, they set up a circulation which consists of a
top and bottom Ekman (boundary) layer separated by a geostrophic (inviscid) core. For
lakes, in which the depth is much greater than the thickness of the friction or Ekman
layers, the usual Ekman dynamics (i. e., the bottom stress assumed proportional to be
the geostrophic velocity) can be used. For any of the Great Lakes, the use of Ekman
dynamies is questionable since they all have shallow shore regions of considerable



extent. In Lake Erie, for moderate winds, the thickness of the Ekman layers are com-
parable to the depth over much of the lake and therefore the use of Ekman dynamics is
not valid.

The necessary extension of the Ekman analysis to the case of a shallow lake has
been given by Welander (ref. 1), and that theory has been used here. The solution for
the surface displacement is first obtained. From this, the horizontal velocities are cal-
culated as a function of depth and horizontal position in the lake, In the present analysis,
only the motions caused by steady winds are considered. Gedney (ref. 2) has numer-
ically calculated the velocities for Lake Erie using Welander's shallow sea formulation.
Comparison of these calculations with measurements in Lake Erie show that steady-state
currents actually do occur,

Goldstein, Braun, and Gedney (ref. 3) developed a method for obtaining product so-
lutions to a certain class of partial differential equations. This class of equations in-
cludes Welander's equation for the wind-driven circulation in shallow lakes for a large
class of bottom topographies. The method was used to reduce the problem of finding so-
lutions to Welander's equation for a closed body of water to the problem of solving an or-
dinary differential equation. To illustrate the method, the complete analytical solution
for an elliptically shaped body of water with a particular choice of bottom topography
when the depth is greater than one-half the Ekman friction depth was given. In this anal-
ysis the method developed in reference 3 is extended to include the case when an island
is included.

Previously, islands have been analyzed numerically in total studies, which included
effects such as irregular mainland boundaries that have masked the island effect. This
analysis is being performed to determine just the local effect due to an island so that a
fundamental understanding is obtained. To date no such island analyses have been per-
formed for a shallow lake.

BASIC EQUATIONS

In the present analysis the basic approximations are that the water density is con-
stant, the vertical eddy viscosity is independent of depth but dependent on wind velocity,
the pressure is hydrostatic, and the lateral friction and nonlinear acceleration terms can
be neglected. The horizontal scale used to justify neglecting horizontal friction and non-
linear acceleration is of the order of the width of the lake., For regions close to the
shore, usually of the order of 1 kilometer, the horizontal friction and nonlinear accelera-
tion terms are important. Therefore, the lake must be much larger than 1 kilometer and
the currents calculated herein are '"large scale'’ currents that are valid in the interior
region away from the shore areas.
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These assumptions reduce the momentum equations to two equations containing as
unknowns the horizontal velocities and the surface slope. The appropriate boundary con-
ditions for these equations are a no-slip condition at the lake bottom and a specified
shear stress (due to the wind) at the air-sea interface. These equations and boundary
conditions can be solved analytically to give the velocity as a function of depth with the
surface wind stress and surface slope as parameters.

By vertically integrating the momentum equations and by using the vertically inte-
grated continuity equation, one can obtain a single equation for the surface displacement:

h n b h -
Cox + Sy * A<27r c—l)x - B(27T a)y £, + A(27r 5>y . B(21r d_> ¢, = 1 (1)

where ¢ is the surface displacement of the sea or lake, h is the depth of the lake, x
and y are the horizontal, locally Cartesian coordinates, d (= Nz v/fc> is the Ekman
friction depth, v is the coefficient of vertical eddy diffusivity, and f c is the Coriolis
parameter, which introduces the effeet of the Earth's rotation. In addition,

N
2 sin<21r E) sinh (217 ll>
A=__ d d

cosn(zn 1)+ cos(x 2] [tanor ) - sinfor 1

e (2)
s1nh<27r E) + sm<21r ?_)
B = d d
cosh<27r E) + cos (27r ll)
d d /
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2m E E
d
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2 sin("_h.) sinh(lll)
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C =
cos(-z-@) + cosh(217 E)
d d
> (5)
2 cos <1r 1_1) cosh (1r 11)
D= d d/ _
cos<21r E) + cosh (21r 11)
d d J
sin(21r E) - sinh(Zﬂ E)
E = 1 d d (6)
<21r !1-) cos (211 E) + cosh<27r E)
d d d

where g is the acceleration due to gravity and 7‘1” and Tg are, respectively, the x

and y components of the wind stress divided by the density of water.

Equation (1) is a slightly rearranged form of that given by Welander (ref. 1). For
details of the derivation of equation (6) and for a discussion of the approximations in-
volved in the derivation, see Gedney (ref. 2). For instance, Gedney has shown for Lake
Erie that the approximations used, except for the approximation of a constant eddy vis -
cosity, induce at the most a small (of the order of 10'1) or very local error in the cal-
culations. It is shown in reference 3 that, when h > ld, the coefficients in this equation
can be approximated quite closely by much simpler functions of h/d. Thus,

A=(
for 251 (7)
B~1 d 2
f ~ 0'1({1) + o’§72) for B> 1 (8)
d 2

21Ty 2Ty
0(1) v L 2e'7rh/d sin(n E) 201 2e'77h/d cos(n E)
gd d gd

for E>l (9)
d 2

Py o 2m Ty
0(2) v 1 2e‘77h/d COS(1T 1-1-) | I Ze"ﬂh/d sin(n 1—1-)
gd gd



The x and y components of the horizontal velocity U and V, respectively, can
be found once the solution to equation (1) is known by using the relation (given in ref. 1)

sinh|(1 + f)7 (Pt ] cosh[n(1+i)§]
(U + V) € = [(1_1)717“’] [ ( d ) - al_, <?E+iﬂ)

— (10)
& gd cosh[(l +i)7 E] coshln(1 + 1) 2 ox 9y
d d
where & is the vertical distance below the water surface and where
™ = 'r‘{' + i'r‘z” (11)

The x and y components of the total volume flow Ql and Qz, respectively, can
also be found from the surface displacement by using the relations

j
£ f 7
e e Udg:i[o(1)+2Lh(E§x_Fc)
gd gd f 27 d v
\ (12)
0 -
Q. f. f
2c-¢c Vd£=-l[c(2)+-2—@(F§x+EC)
gd egd J, 2 d Y]
7
where
sin(Zn E>+ sinh(27r E)
F=._1 d 4/ 11 (13)

2m h cos(27r E>+ cosh<27r E)
d d d

When h > %d, equation (12) can be approximated closely by the simpler relation
(ref. 3)

2mQf
cwo-[(1+i)-i-2—”-11](§’x+i§) for B>1 (14)
od d y d 2

where we have put




and

SN\ ) (16)

or, using equations (9) and (11) and collecting terms,

w .
o~ i 21T [Ze'”(lﬂ)h/d - 1] for 2>1 (17)
gd d 2

The boundary conditions for equation (1) are obtained by specifying the normal vol-
ume flow at the coasts. Thus, if ng and n, are the x and y components, respec-
tively, of the outward drawn unit normal n to the boundary, then for any closed body of
water the boundary conditions for equation (1) are obtained by substituting equation (12)
(or for the case where (h/d) > (1/2) eq. (14)) into the relation

anl + an2 =0 (18)

Class of Depth Distributions for Which Equations Can Be Solved

We shall now suppose that there exists a nonconstant harmonic function u of x and
y and an arbitrary function H of u only such that the depth distribution h can be ex-
pressed in the form

hx,9) - 1 Hlux,y)] (19)
d 27

This is a fairly general functional form, and it will be possible, for any one of a
large number of lakes and seas, to choose the functions u and H in equation (19) so
that the depth distribution is approximated closely by a relation of this type.

When relation (19) is substituted into equations (1) and (2), we find that

Cox * Syy + 2[awu, - aayu Jt, + 2[eeug + f@u e, = 1 (20)

where



_ sin H sinh H dH
(cos H + cosh H)(sin H - sinh H) du

R
1l

(21)
l sinh H + sin H g_I_{
2 coshH + cos H du

B =

g=CoshH+cos H [ao-( 1) . 30(2)] (22)

sinh H - sin H ox oy
or when h > % d the coefficients o and B are given to a close approximation by

a0
for E>l (23)
H d 2

du

[

Bwl
2

Now, let v be the harmonic conjugate of u. Then the function
w=u+1iv (24)
is an analytic function of the complex variable
Z =X+ iy
and the functions u and v satisfy the Cauchy-Riemann equation. Upon taking u and v

as new independent variables for equation (20) and introducing a new dependent variable
Z defined by

cosh H + cos H

7 - \/sinh H-sinH , (25)

or by

- 1
Z=t for h>2d (26)

(if the approximations (23) are used) we find, after using the Cauchy-Riemann equations
to simplify, that equation (20) becomes

Zoyy + Dy + 28@Z - {[a(u) T+ [a@) ]2}2 _F @0



where

sinhH +sinH L%

P \/cosh H + cos H [0(1) N 0(2)] ,QZ_,Z (28)
Y llaw

When h > %d the transformed equation can be approximated by

" for dE>—;- (29)
1 2)]|d
F= [cr}({)+o§, {“i,

The details of the algebraic manipulations involved in obtaining equations (27) to (29) can

be found in reference 3.
We are interested in solving equation (1) for a closed lake or sea that contains a sin-

gle island. Thus, we shall seek solutions to equation (1) in the doubly connected region
shown in figure 1 where the outer boundary (shore line) is ¢ and where the inner (is-
land) boundary is ¥.

We shall suppose that the bottom topography of the basin can be approximately de-
scribed by a function of the form (19) and that the depths along the shore lines ¢ and ¢
are both constants. Equation (19) now shows that the harmonic function u must also be
constant along both & and €. Without any loss of generality we can always redefine the
functions H and u sothat u=0 on €. We shall denote the constant valueof u on ¥

by ug. Again, without loss of generality, it is always possible to arrange matters so
that ug > 0. Now, consider the analytic function w defined in terms of u by equa-

tion (24) and put
T=e" (30)
Then, T is an analytic function within the multiply connected region of figure 1 and since
, T[ = el

u
it follows that [T|=1 for z on ¢ and |T|=e ° = constant for z on ¥ Hence the

mapping



w

transforms the multiply connected region of figure 1 into the interior of the concentric
annular region in the T-plane shown in figure 2, with the outer boundary ¢« mapping into
the (inner) unit circle and the inner boundary & mapping into the outer circle with radius

R =e® (31) -

On the other hand, as long as the boundaries of the regions shown in figure 1 are
sufficiently smooth, the Reimann mapping theorem for doubly connected regions guar-
antees that there always exists an Ro for which such a mapping exists (ref. 4).

The mapping w =1n T transforms the cut annular region in the T-plane (see fig. 3)
into the rectangular region in the w-plane shown in figure 4. Thus, u can always be
chosen so that the analytic function w, defined in equation (24), maps the cut region oc-
cupied by the body of water shown in figure 5 into the rectangular regions in the w-plane
shown in figure 4. The cut occurs along a line of constant v.

Now we have transformed equation (1) into equation (27) or, when h > = d, into
equation (29) with u and v as the independent variables. Thus the problem of solving
equation (1) for the lake configuration shown in figure 1 has been transformed into the
problems of finding a solution to equation (27) or, alternatively, when h > 1 d equa-
tion (29) in the rectangular region in the w-plane shown in figure 4. Although this sim-
plifies the shape of the region in which the problem is to be solved, the most important
simplification is due to the fact that all the coefficients in equations (27) and (29) are
functions of only one of the independent variables. As will be shown subsequently, this
will allow an analytical solution to the problem to be found.

Before this is done, however, it is first necessary to transform the boundary condi-
tion (18) in the physical plane into a boundary condition in the w-plane.

To this end, notice that since u = 0 on the boundary ¢ and u = u, on ¥ the unit

normal vector 0 is given by
o= < Vu ) on €
,Vu , u:O

ﬁ=<VuO on ¥
.

Hence, it follows from the Cauchy-Riemann conditions and the definition of the derivative
of an analytic function that the components of n can be written as




d d
n1=_1_/ge(_‘i’> =1 /Qe(w> dw dz | l,e
= I -~ -
dz dz
and } (32)
1
ng = Im
2 |dw] ( ) | I
dz J
Thus, it follows from equations (12), (16), and (19) that boundary condition (18) can be
written as

*
Re [cr + H(E + iF)(§£+ i _a£>]<d_z\) =0 for z on ¥ andfor z on ¥
ox ay

After using the Cauchy-Riemann equations and the chain rule for partial deriva-
tives, this becomes

HFac HEac Reo(dz> on u=0 and u = ug for -Tr=v=r
ov Ju dw

It now follows from equations (25), (6), (13), and (19) that Z must satisfy the following
boundary conditions.

PoZy * A2y + 8,2 = '}/(O)(V) for u=0; T=v=g

(33)

for u=u_; -rt=v=n

_(8)
pSZu + quv + sSZ = y(v) s

where

10

/";“
S =



T

_ sinh H(0) - sin H(0) )
O cosh H(0) + cos H(0) '

sinh H(us) - gin H(us)

p =
S cosh H(us) + cos H(uS)

sinh H(0) + sin H(0)
cosh H(0) + cos H(0)

q, = H(0) -

sinh H(uy) + sin H(uy) - (34)

qg = Hlug) -

cosh H(us) + COS H(us)

sin H(0) sinh H(0) (@)
[ 2 \du/__
cos H(0) + cosh H(O)] u=0

du

sin H(u_) sinh H(u.)
[cos H(us) + cosh H(us)] u=ug

-/

and

*
04y = \/ sinh H(0) - sin H(0) p, 0(315 )
cosh H(0) + cos H(0)

- & (35)
sinh H(u ) - sin H(u_)
yFw) =\/ 2 = Refo($)

cosh H(uS) + Ccos H(us) dw

u=uSJ

When h > —;-d, equation (33) can be replaced by the approximate boundary conditions

Poly + 98y = y(o)(v) for u=0; -r=v=v7

( ) for _>;' (36)
o) _ S o . d
Scu+qscv_ Yo (V) for U =ug; T<v<T

where now

11



P, =Pg=1)
q, =HO) -1 p
qg = Hiug) - IJ
and
*.
YO = Re l—o(d—z)
i dw Ju=0

Y w) = Re Ef(ffv)*

e

1

for B> (37)

d

for B> 1 (38)

d 2

Since equation (27) is elliptic, it is still necessary to specify boundary conditions

along the sides v = +7 of the rectangular region

shown in figure 4. These conditions

follow from the fact that ¢ and its normal derivative must be continuous across the cut

in the physical plane (see fig. 5).
V =+7 and v = -7, we must require that

)53

Since the opposite sides of this cut map into the lines

and r 0=u=ug (39)
(%) &)
ov/. _ ov,
v=rm/2 v=-7/2 2
Or in view of equation (26) these can be-replaced by the condition
CGJ,E)= C( ’ "71)
2 2
> O0sus=u, for 2>1 (40)
&G o
ov v=m/2 Wiy -n/2J

when the approximate equation (29) is to be used.

12



We have now shown that the surface displacement for a sea or lake of arbitrary
shape can be found by solving the differential equation (27) in the interior of the rectan-
gular region shown in figure 4 subject to the boundary conditions (33) and the periodicity
conditions (39). Or, if h/d > 1/2, the surface displacement is approximately obtained
by solving equation (29) in the interior of the rectangular region in figure 4 subject to the
boundary conditions (36) and the periodicity conditions (40).

Reduction to Ordinary Differential Equations and Summary

In order to solve the boundary value problem, we put
7T -
Qn(u) 52_1 / Z(u,v)e"lnv dv n=0,+1,+2, . . . (41)
T
-7

Then it follows from the theory of Fourier series that this transform can be inverted to
obtain

o0

Z(u,v) = Z Q (we™ 42)

N=~c0

On integrating by parts and using the periodicity conditions (39), we find that

m N
1 -inv s
E;T- Zv(u,v)e dv = 1nQn(u)
> (43)
7T .
1 Z__(a, vie W gy = -nzsz (u)
o vV : n
- J

We shall now show that each function Q, can be determined as the solution of a cer-
tain ordinary differential equation. To this end, muiltiply equations (27) and (33) by
e-mv/ 27 and integrate both sides of the resulting expressions with respect to v between
-7 and m, We find, on making the definitions

13



9 M)
d_zdv

dw

T
I (u) = 1 Jcosh H + cos H o-inv [03({1) . 0§72)]
n 27 Y sinh H - sin H 7;

> n=0,21,42, . . . (44)

T
y (@) =L [sihH-sinH eV o [o(d_z_ >*] dv
27 Ycosh H + cos H ~ dw J

and using equations (43), that Q, must satisfy the ordinary differential equation

n=0,+1,+2, .
" . P 9 . _
©, - (@ +a” +n” - 2ing)Q =T (45)
0=<=u= ug
subject to the boundary conditions
P,2,(0) + (s +ing ), (0) = ¥,(0)
n=0,x1,+2, . . . (46)

P2 (uy) + (s + ing )R (1) = ¥, (u,)

where p, q,, S, Pys g and s, are defined by equations (34) and equations (21) de-

fine a and B as

>
i
]

sin H sinh H dH
(cos H + cosh H)(sin H - sinh H) du

(21)
1 sinh H +sin H dH

B =
2cosh H + cos H du

When h/d > 1/2, equations (44) to (21) (see eqs. (23) and (37) and ref. 3) can be re-
placed by the approximate equation.

" (1) . @z .
_ 1 -inv[ ] Z
' () =— e c. + O — | dv
n() o X Y | law
r n=0,+1,+2, . . . for E>-1- 47
. . d 2
'yn(u) -1 / e~V Re [0' (d_z_) ]dv
27 o dW _)

14



n=0,+1,+2, .
1" 2 . _ h 1
Q, - (n“ - 21nB)Qn =T, for 3 > > (48)

-z -<
O_u_uS

£, (0) + in[H(0) - 112, (0) = ¥,(0)
n=0,+1,%2, . . . for B>1 (49)
Q! (u,) +in[H(uy) - 1} () = 7, (u ) d 2

B =

N | =

dH for 251 (50)
du d 2

Finally, equations (25) and (42) show that, once the systems (45) and (46) have been
solved, the surface displacement can be found from the relation

o0
£ = /cosh H + cos H E Qn(u)einv (51)
sinh H - sin H
n=-=0
or when h/d > 1/2 approximated by
[2e]
£ - E g e™  for B> 1 (52)
d 2
N==c0

Thus, an exact solution for the sea-level elevation (and, since all other physical
quantities can be expressed in terms of this, an exact solution to the complete flow prob-
lem) can be obtained once the ordinary differential equation (45) with the boundary condi-
tion (46) has been solved. This solution is given parametrically in terms of the variables
u and v. These parametric variables are determined in terms of the physical variables
x and y by the mapping

Z~W

with z =x+1iy and w =u + iv, which maps the lake or sea conformally into the rectan-
gular region in the w-plane shown in figure 4. The coefficients of the ordinary differen-
tial equation depend on the particular choice of the function H(u). Thus it is impossible
to proceed further in the general case.

The procedures involved in obtaining a complete solution are best illustrated by con-
sidering a particular case. In order to simplify the calculations it will be assumed that
h/d > 1/2 and the approximate equations (47) to (50) will be used. A particular depth

15



distribution function H(u) will first be chosen. The ordinary differential equation will
then be solved, and the surface displacement will be found as a functionof u and v. A
particular shape of the body of water and its island will then be chosen. Once this is
done the relation between the physical variables x and y and the parametric variables
u and v will be found. This will give the surface displacement as a function of x

and vy.

SOLUTION OF ORDINARY DIFFERENTIAL EQUATION FOR
PARTICULAR BOTTOM TOPOGRAPHY

We shall consider the case where the function H of u is given by

Hu=H, +2u O0=us=u (53)

S
uS

where Ho is the constant depth at the mainland shore and HO + 6 1is the constant depth
at the island shore. On inserting equation (53) into equations (48) to (50) we obtain

n=0,x1,+2, .

" 2 ind _
Q- ( - T)Q“ =T, (54)
S
0=u= ug
1 .
Qn(()) + 1n(Ho - l)Qn(O) = 'yn(O)
n=0,+1,+2, . . . (55)

Qr'x(us) + in(H0 + 65 - I)Qn(us) = 'yn(us)

Before obtaining the solution to this boundary value problem, we shall first show that

uS
[ rotdu = 7g(ag) - 7o) (56)

16



To this end notice that equations (47) imply

1 T (oNdz P |
rO:E / [crx +oy]d—w dv
T
*
volug) = — ﬁe[ df-) ] dv » (57)
dw. u=u
&
7
1 dz
0) = — = d
7@ = - / Re [O‘<dw>*]u—0 VJ

Hence it follows from equation (24) and the Cauchy-Reimann equations that

u u m
) T ,(u)du = 1 ’ (1) + (2)] |dz 2 du dv
0 T on Ox Oy aw
0 0 -
us T
= -zl [o}((l) + 0;2)] (X - X ¥y)du dv
T
0 —T
us T
1 (1) (2)] X, Y) gy ¢
o A [ox T oy d(u,v) L
-

On recalling that the rectangular region in the w-plane over which this integration
is performed transforms into the interior of the body of water in the z-plane, it follows
from the theory of transformation of multiple integrals that

u
/ > I‘O(u)du = élff [01({1) + og,l)]dx dy (58)
0 m
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where the integration is carried out over the entire surface occupied by the body of
water. Let C denote the distance measured along the boundary € of this region; let

S denote the distance measure along the boundary & of this region; and let the positive
directions of C and S be counterclockwise and clockwise, respectively. Then applying
the divergence theorem to equation (58) yields

u
f > Ty(u)du = 1 /[O(I)HI + c(z)nz]dC s L fi}(l)nl + c(z)nz]ds
2w 2w
0 74 2

Using equation (32) gives

u

S * *
Towdu=-"L @) Re o(gZ_) Wac + L f Re a<¥) Wlas  (59)
27 dw dz 27 dw dz
0 %
Now
las | = y(@x)? + (dy)?
and
HRIEHE]
dz ox ox
Hence
2 2 2 2
dw| jas | = (ﬂdx) +(i"_dy> +(§V_dx) +<3_“dy>
dz ox ox ox ox
On using the Cauchy-Riemann equations and noting that u_u_ = -v_v_ we find that

X'y y X

,gﬂ las | = V/(ux dx +uy d5)? + (vy dx + Vy d5)” - '/(du)z (@)

But u is constant and equal to u_, on ¥ Hence,

S
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R

|j—‘z”| jas| = Jav |

or, taking into account the directions of transversal of the contours indicated in figures 4
and 5, we see that

dw

ds =dv
dz
It also follows in the same way that
I dw | dc = -dv
dz
Equation (59) can therefore be written as
U T T
Ty(w)du = 1 Re [0<%>‘] av - L Re [cr(%)‘] dv
27 aw/ J,—u 27 dw =0
0 -7 S -1

Finally, comparing this with equation (57) shows that equation (56) holds.
Having established this result, we can now proceed to solve the boundary value prob-
lem (egs. (54) and (55)) for n = 0. In this case equations (54) and (55) become
Qg = T, (60)

and

24(0) = 74(0)
(61)
24(ug) = vg(ug)

Integrating equation (60) gives

u
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where ll is a constant of integration. On substituting this into the first boundary condi-
tion (61), we find that 1 1= yO(O). Hence,

u
Qq = '/0' Ty(t)dt + 74(0) (62)

Equations (56) now show that the second boundary condition (61) is automatically satisfied.
Notice that it would be impossible to satisfy both boundary conditions (61) if equation (56)

did not hold.
On the other hand, integrating equation (62) gives

u t
} 1
Qg =1y + -/o- dt -A Ty)dt + 74(0)u

where [ 0 is a constant of integration. An integration by parts yields
u
0o = 24 +7oO)u + ./(; (u - T y(t)dt (63)

Since both boundary conditions (61) are satisfied, the solution (63) is indeterminate
to within an arbitrary constant ZO' But this is as it should be since the n=0 term in
equation (52) is independent of v and as can be seen from equations (29) and (36) the
original boundary value problem for ¢ involves only the partial derivatives of { and,
hence, determines ¢ only to within an arbitrary constant,

We now return to the boundary value problems (54) and (55) and suppose that n # 0.

Put
1/2 1/2
. 9 . 2
» = p2_ins_ nff /8" c1-inlally (8 1 (88)
n us \/5 nus VE nus

where for definiteness the branch cut has been chosen to lie along the imaginary n-axis
between 0 and i5/us. Then, the general solution to equation (54) is

u
A u -Au
g =tPe® e ® +>\_1 / sinh\_(a - )]T M)dt n=s21,22, . ..  (65)
n
0
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where l(n) and l(n) are constants of integration. Substituting this expression into

boundary cond1t10ns (55) shows that l(ln) and l(n) satisfy the equations

!+ inH, - 0] - 2P - in(H - 1)]=7,(0)

A A
l(1n) A, + In(H, + 6 - 1]e ns _ l(zn) [A - in(H, + 6 - D]e ws

U
S

= y(u,) - K_l [, cosh A (ug - ) +in(H, + 6 - Dsinh ) (a - )]0 ()t

0

Solving these equations for l(ln) and lgn) gives

(n)
Z1 Kn -7
- “%n
Ap - 1n(Ho -1
(n)
12 Kn -J - Yn(O)Kn
A +in(H -1 % 2 2 2
n o A, +n (HO - 1)
where we have put
. . Ans
=P, -in(H, - D]x +inH + 5 - 1)]e
“A_Uu
-y +inHy - D] -in(H +5-1]e "% n=i1,22
A, -in(H +6-1)] -xu
Tn = 7n(tg) - v, (0) | — 2 e "°
Ay - 1n(H0 -1
. s
- K— wn(t - uS;H0 + 6)I"n(t)dt n=+1, 42,

(66)

(67)
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and

Au

u -
[, +in¢ - Dle ® n=s1,22, . . . (68)

A
w (8;8) =[x, - in(¢ - D] "

Substituting these results into equation (65) now shows that

+ L | sinh @-t)r (dt  n=s:1,22, . . . (69)
"

Substituting equations (63) and (69) into equation (52) and noting that [Qn(u) ]"< = Q_n(u)
gives

2 -Apu
I vp(0)e
€=1y+7500u+ (u - )Tyt)dt + 2 Re — w (GH) - _
K, A - m(H0 -1)
0 n=1
u
s sinhx_(u - t) 0, @®)dt b '™ (70)
n )

This gives the general solution to the problem in terms of the integrals I‘n(u) and yn(u),
which are defined in equations (47). It can be seen from equation (17) that, in order to
evaluate these integrals, the complex wind stress 7 and the function z ~w, which
maps the interior of the body of water into the rectangular region in the w-plane (shown
in fig. 4), must be specified. For lakes a good approximation is to take the wind stress
as a constant, We shall therefore work out specific results only for this case and in the
remainder of the report we will assume that ™ isa complex constant. The function w

can be found by the techniques of conformal mapping once the shape of the lake and island
are specified,
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Reduction of Integrals I, and y,, in the Case of Constant Wind Stress

When the wind stress 7 is equal to a complex constant, it is possible to reduce the
integrals (eq (44)) for r, and vy, toa form in which the only integrals that appear are
contour integrals which depend only on the function w and not on the depth distribution
H. In order to simplify the calculations we shall restrict ourselves to the approximate
form (eq. (47)) with ¢ given by equations (17) and (19) for h > %d.

It is convenient to introduce the functions z and z* as independent variables.
Then, since w is analytic, w is a function of z only and not of z*, and w" is a func-
tion of z* only and not of z. In addition, since

z =X+ iy
and
z¥ =x - iy
2.1 [_a - i]
dz 2 Lox oy
(71)
o -1 [i+ i _2]
*
oz 2 Lox oy
Then
a0 113D 3@ ila® a6V
—_—= = + - -
dz 2| ox oy 2] ox oy
Hence,

Re 22 1[0 . o]

Since z is a function of w only and not of w"< this can be written as

o o) - 2 2o (2o 2)
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but, when 7% is a constant, it follows from equations (17) and (19) that ¢ is a function

of u only and independent of v. Hence,

90 _1ldo
ow 2 du
and
) (2 do d 1[7doY /aw\.  do d
01(()+0)=pe__0_w_ =_(_2)(_W> , dodw (72)
y du dz 2 \du/ \dz du dz
Also,

Re o((%zv)* _ .;.[o (3.9* . o*(g_:)] (13)

After inserting equations (72) and ('73) into equation (47) and recalling that o is
independent of v and that

dz

] (gz_)*
dw

dw \dw

we get

* T T *
T, (u) = 1 (d_°> 1 e-inv dz 4o +(d_o_)__1_ o-inv (g_z_ ) av
2\du/ 27 J - dw du/ 27 - dw

T T "
v, = 1 o 1 eV dz 4y, o 1 e v (d_z_) dv
2 21 S dw 27 ~ dw

or, since w=1u +iv,
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. _ |
|
|

-] e (@]

1

4 n=0,%1, .

Qs
\Y4
D=

(74)

YW =

X
=

o e™ In + g™ Ifn] |
where we have put

i +i7m

In = ._1_ e-nw d._z. dv = _.1_ e-nW QE- dw
2m - dw 271 -i7 dw

It can be seen from figures 3 and 4 that by making the change of variable w=InT we
transform this integral into an integral about a closed contour, C o’ for example, in the
T-plane. Thus

I - 1 1 a4z 4 ('75)
27 Co " dT

where, since dz/dT has no singularities inside the annular region between the circles
of radii Ro and 1, the contour C o can be taken as any closed contour lying within this
region and encircling the origin.

Now it is well known from the theory of functions that dz/dT must have a Laurent
series expansion about the origin in the T-plane that converges in the annular region. It
is easy to show that In is simply the coefficient of Tn'1 in this series. In the general
case an identical analysis beginning with equation (47) shows that

*
I"n(u) _1 JjcoshH+cos H (d_o> o In +<d_o>e—nu I*
2 V sinh H - sin H |\du du -

sinh H - sin H [0* MU , je-IU Itn]

n=0,+1,+2, .

y) =1
2 Ycosh H + cos H

n

It follows from figures 1 and 2 and equation ('75) that

-1 -
IO—— dz = 0

27
Co
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Hence,
o) = ygw) =0 (76)

It follows from equations (17) and (19) that

. W .
o= 2T 2e-[(1+1)/2]H -1 for .ll > .]; ()
Hence,
- W .
do_ _2m7" 1+ i)e'[(l*'l)/z]H dH for B>1 (78)
du gd du d 2

Simplification of Solution for Surface Displacement

in the Case of Constant Wind Stress

We shall now use the results obtained in the previous section to simplify solution (70)

for the case where the wind stress 7  is constant.

To this end notice that equations (63) and (76) show that
QO = lo = constant ('19)
Now for n # 0 it follows from equation (64) that

AL = oA (80)

*

W, = —w_ (81)
*

K =-K_, (82)
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Equations (67), (69), and (74) show that we can now write

g =11* 5D 1g 5(2)
2

n -n“n g n'n
(83)
(1) (2)
= 1 ol 1 InQ
where
-nu A -in(H +6-1)] -2 u
Jr(ll) Eo(us)e S _ o(0)|-2 (o) e WS
A, - in(Ho -1

1 At - ugH +8) 39 o0t 5 (84)
2>x dt

Jr(lz) =0 (us)enuS - @ n o * 0 - I)L_x .

A, - in(H_ - 1)
{0 )
S *
__1 w,(t - ugH + 5)(92) et gt
2 dt
0
J (1) n
(1) - w H O'(O)e 1 a
o . = -nt
K- wp(;Hy) - — <D sinh(u - 6] 22 e at (85)
and
J(2) %k n *
91(12) =D (uw;H) - o (O)e — + 1 Slnh[kn(u - t)](iq-) elt dt
K, " % 2, -in(H - Ay A dt
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Equations (66), (80), and (82) now show that

AT -5 oK B
n T, - in)(HE) - DI +i(-n)(H - 1)]

therefore, equations (66), (68), and (80) to (82) show that

a1 @
[Qfl )] =Q(_n) for n=4+1,+2, . . . (86)
Recalling that (see remarks preceding eq. (70)) Q* =Q and using equation (79) we find
n -n
E=14+2Re ;  (we™

n=1

Substituting equation (83) into this expression gives
o0 o0
- (1) inv (2) inv
E=1,+ Re E I_0. " (we +Re I (e
n=1 n:l
Since for any complex number M, Re M* = ReM, this becomes
o0 o0
_ E * (1) inv z : *f (2), ., ]* -inv
=14+ Re I-nQn (u)e + Re In[Qn (w| e
n=1 n=1
Finally, using equation (86) and the fact that I =0, shows that
N oDl
¢=15+Re E I e we™ (87)
N==c0

After integrating by parts equation (84) becomes

a(0)K
Jfll) = - n 41 o_d.[wn(t - ug; H + 6)e'nt]dt
2 A -in(H_ - D] 22 dt
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Substituting this into equation (85) and performing another integration by parts yield

u
S

Q(l) _ wn(u; HO)

n o a [wn(t - ug; H0 + 5)e'nt]dt
anKn dt

1 o4 [e’nt sinh_(u - t)]dt (88)
A at
0

Substituting equation (53) into equation (77) and using the result in equation (88) , gives

g
-(ﬂ) (H L0
) o
(1) _ 2V jonH) 2 Y ) ar -nt
9] = a _ .
n 2d < e e % [e wp(t ~u;H + 5)]dt
0
"
u
EAY)
2 2 ° Y/ d [ -nt
- e — |e™" sinh A, (a - t)]dt
An dt
0
2
1 [ Mg
- = [e wn(u;Ho) - wn(u - uS;H0 + 0)
n
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Since

u

s .
(o)
u
s d]. -nt .
e E{[e wn(t -u Ho o+ 6)]dt

1+i
. ~-Inu_+H—=16
_Op -P, - in(H + 5 - 1)] e_xnus_e[ s+(2>]
1+1i\ &
n - +< )_
n
2 u

1+i
j (Xn + n)[hn + in(H0 +6-1)] e)tnus -[nus+(—2_)6

n+7\n+<1+i>—6—

2us

1+

no (1 +1)[2 + i(H, + §)] '[““s+(—2—) 5]
= e
N 572
ug [n+(1;1)1f:] -7\121

(An + n)[kn + in(Ho +6-17] -xu
+

. e ns
n-)tn-l.(.l__'t_l_).g_
2 ug

i (kn + A, + in(H, +6 - 1)] exnus




and

(e
2 uS i

-nt .
@ [e sinh An(u - t)]dt

N n-A, re'xnu_ 7 (n'”\n) exnu
1+1\ 6 1+1) 5
2['%*(2):] 2["”“*(2)?]
S S
It follows that
. W
(D - 2m7" o(0) (89)
gd
where we have put
2@ - L, (H)M (H + e 5 -w (a-uH + oM_(H)
n E‘ n" o n\o " n s’7o n‘ o

n

¥ 1+i)enl:mH(l—eri)I{:l
b (9

S,
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and

G
nd(1 + i)[2 + i¢] e V2 1

e

M, (t) =

Since

. 2 ;
I:n+(1+1>£j -7\3"1=____(1+1)6[2n+(1+i)<n+-1-—6—>:|
2 u 2uS ZuS

substituting equation (89) into equation (87) gives

2]

. W .

E=1g+ Re ngT E Ifnﬂﬁlo)(u)emv
g

N==00

where

-nu
- wn(u - us;Ho + G)Mn(Ho)]

2e-|:nu+(1%i) H(u)i|

{0 - K_1 [wn(u;HO)Mn(HO + de
n

2n+(1+i)<n+l—6—>
2us
Anu

A -
wn(u; €) =[x, -in(¢ - 1)]e n® + [?\n +in(¢ - 1) Je
. . AnY%
K,= [)\n - 1n(H0 - 1)][7\n + m(H0 +6-1)]e

-l u
- +in(H - D], - in(H +6-D]e * 5
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— ::@

()
Mn(C) = 2n(2 + ig) e 2 -1 (92)
2n + (1 + i) (n+.1£_>
2u
S
=1 1 .dz gp (75)
" oom o pndT
o]

This gives the solution to the problem for the case of a constant wind stress. Numerical
results can be obtained once the constants In are specified. These constants depend
only on the shape of the lake and island, and it is only through these constants that the
specific lake and island geometry enter the problem. They can be determined once the
mapping z -~ T of the region occupied by the body of water into the annular region of
figure 2 is known. The constants In are then determined either by evaluating the con-
tour integral (75) or by finding the coefficients of the Laurent series expansion of the
mapping about the origin in the T-plane.

Since w =1In T, a knowledge of the mapping z - T is equivalent to a knowledge of
the mapping z —w, which transforms the cut region occupied by the body of water shown
in figure 5 into the rectangular region in the w-plane shown in figure 4. This mapping
can be used to express the variables u and v inthe w plane as functions of x and y.
Since equation (90) gives the surface displacement as a function of u and v, a knowledge
of the mapping z —w allows us to express the surface displacement parametrically as a
function of position in the physical plane. In order to illustrate these ideas a complete
numerical solution will be worked out for a specific geometry.

Solution of Complete Boundary Value Problem for a Circular Lake Containing an

Eccentricity Located Circular Island With an Imposed Constant Wind Stress

In order to find the mapping z —w the specific shape of the body of water and its is-
land must be specified. We shall, therefore, suppose that the body of water is a circle
with radius r and that the island is also a circle whose radius is rg. However, the
center of the island and the center of the lake do not necessarily coincide. The plan view
of the lake and island are shown in figure 6. As discussed, the slit is included in the fig-
ure, and with no loss in generality we have chosen the x-axis to lie along the line of cen-
ter of the island and the lake. In order to find the analytic function w with the appro-
priate properties it is necessary to map the cut eccentric annular region shown in
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figure 6 into the rectangular region in figure 4 in the manner indicated in the figures.
This is best accomplished by first finding the mapping z = T, which transforms the ec-
centric annular region in the z-plane (fig. 6) into the concentric annular region in the T-
plane as shown in figure 3. But this mapping is given in reference 4 (p. 287) as

T=Z-ar (93)
az -r

where a is related to the coordinates X, and Xy of the island shown in figure 6 by

o) b )]
2)-(3

with a > 1 and where the radius of the larger circle in the T-plane (shown in figs. 2
and 3) must be equal to

S]]

Since w=In T it follows from equation (93) that

W=u+iv=1n(z"ar) zZ =X+ 1y (96)
az - r

Hence, for each value of the point x,y inthe region occupied by the body of water in
figure 6 we can compute a point (u,v) in the rectangular region of figure 4. For this
value of u and v, we can find a value of the surface displacement ¢ from equation (90).
This determines ¢ as a function of position in the physical (z-plane) plane.

It only remains to determine the constants In. To this end we solve equation (93)
for z to obtain
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Differentiating with respect to T gives

2
dz _ r_2 - 1
dT (1 - aT)2
On inserting this into equation (75) we obtain
I = r(a2 -1) l- 1 4T n==+1,+2, . . . (97)
27i A Tn(l _ aT)‘?‘

o

where C o is any contour encircling the origin and lying between the unit circle and the
circle of radius R, in the T-plane (fig. 2). This integral can easily be evaluated by the
method of residues. Since a > 1 the pole of order two of the integrand at the point
T = 1/a lies within the unit cirecle and therefore within the contour C o In addition for
n>0, In has a pole of order n within C0 at T =0, but this pole will not occur when
n =<y,

In order to evaluate the residue at T = 0, we expand (1 - aT)~
about T =0 to obtain

2 in a Taylor series

;2 = Z (m + 1)(aT)m
(1 -aT) b

Hence the integrand has the Laurent expansion about T = 0:

=0}
_1_5 = (m + 1)a@p™
n z /
T(1 - aT)* 4=

The coefficient of T~ 1 is nan"l; hence, at T =0 the residue of the integral in
equation (97), Res4(T =0) is
na®-1 for n=1,2, .
Res (T = 0) =
0 for n=0,-1,-2, .
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The residue ﬁ%(l‘ = %) at T = -1- is

a
Q%( =_1_)=<d_ 21 ) = -na®1 for n=0,+1,+2, .
a dT n
a T po1/a

Hence, on taking the sum of the residues and using the residue theorem, we find that

-r(a2 - 1)nan"1 for n=-1,-2, .
0 for n=0,1,2, .
2
r@7-1n  gopopo 1,2, .
* an+1
I~ (98)
0 for n=0,-1, -2, .

Equation (98) gives the values of the constants that are needed for equation (90) to com -
pute the surface displacement.

Computation of Flow Field from Surface Displacement

Having solved for the surface displacement, the other quantities of physical interest
can be calculated. These quantities are the complex horizontal velocity U + iV which is
given in terms of the surface displacement by equation (10) and the depth averaged veloc-
ity Q, which is given in terms of this surface displacement by equation (14).

Since the surface displacement is computed first as a function of u and v, it is con-
venient to express the other quantities as functions of u and v and then use equa-
tion (96) to relate them to x and vy.

In order to accomplish this, we use equation (71) to write

Ee + 18y =225

. . - * . L] *
but, since w is analytic, w is a functionof z only. Hence,
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e, +igy =2 2% (‘fa‘”)* = (g, + 18, (3*:)* (99)

ow

Inserting this together with equation (19) into equation (10) now yields

inh 1+1[H glr_g}
(U+iV)f_°=[(1—i)7rTW}s1 {( 2> W d]

g gd cosh [(1—‘;-1) H(u)]

COSh[(lzi)Eg—g] ot , ; 28\ /dw\"
= ° -1< +i )( ) (100)

Upon noting that T = e%, we find that

H

dw dT dw dT

*
It now follows from equation (97) that the term (dw/dz) in equation (100) can be ex-
pressed as a function of u and v by

%k * 2
w
<;1_W> = KL‘E)_; W =u-iv (101)
z
r(a2 - l)eW

Thus, equations (90), (100), and (101) give u + iv as a functionof u and v and &.
In a similar way we can substitute equations (19) and (99) into equation (14) to ex-
press Q as a function of u and v:

27Qf
gd

ey {1 +1[1 - H(u)]}(l;’u . icv)(:_:’)* (102)

However, instead of working with the volume flow itself, it is more convenient for plot-
ting purposes to find the stream function. In reference 1 it is shown that Ql and Q2
satisfy the continuity equation
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Q1='2j£/

y
(103)

- _ oy

Qy = - =X

2 0x

Hence

* *
Q:%-iﬂ=l(¢x+i¢y)=§§£=3£‘!_<9‘_”) =%<§’£+i2‘_”><£‘!>
* \dz i\ou ov/\dz

oy ox 1 i az* i ow
Inserting this into equation (102) dividing through by 1/i (dw/ dz)* and taking the real
part gives
x|

2t
9 . (d
T[] e

Since the normal volume flow vanishes at the boundaries the boundaries themselves must
be streamlines. Hence Y must be constant along each boundary. Since Y is only de-
termined by equation (103) to within an arbitrary constant, we can set it equal to zero

along the mainland coast 12 in figure 6. Since this line maps into the line u =0 in the
w-plane (fig. 4) it follows that

Y(0,v) =0 T=vV=snw

Hence, equation (104) can be integrated along a line of constant v to obtain

27f u * u u
- Y, v) = Re i o(gi) du + [1 -h@)] 9 qu+ o / £ du (105)
gd 0 dw 0 ou ov 0

which together with equations (17), (90), and (101) allow us to compute Y as a function
of u and v.
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DISCUSSION OF RESULTS

A method for obtaining solutions to a certain class of partial differential equations
in a doubly connected domain is given. This class of equation includes the equation for
the wind-driven circulation in shallow seas and lakes for a large class of bottom topog-
raphies. The technique is used to reduce the problem of finding solutions to the shallow
sea equation for a closed body of water with an island to the problem of solving an ordi-
nary differential equation. An approximate form of this ordinary differential equation,
which is valid when the depth of the body of water is greater than one half of the Ekman
depth, is solved for a particular bottom topography and a constant wind shear stress.

The results presented herein are for a circular lake containing a concentrically or
eccentrically located circular island with a logarithmic bottom topography. Two classes
of bottom topography are included: One where the lake is deepest at the mainland shore
and the other where the lake is deepest at the island shore. The assumption that the
water depth is greater than one half the Ekman thickness is quite realistic. For instance
in Lake Erie, which is the most shallow of the Great Lakes, only some 15 percent of the
total bottom in the central and eastern basin is less than 1/2 the Ekman thickness for a
10 meter per second (22 mph) wind.

The surface displacement of the body of water is given in terms of the intermediate
variables u and v Dby equation (90) with the aid of equations (91), (68), (66), (92), and
(98). The horizontal velocity as a function of u and v and depth £ is given by equa-
tion (100) and the stream function ¥ as a function of just u and v is given by equa-
tion (105). Since the physical coordinates x and y of the horizontal plane of the body
of water are related to the intermediate variables u and v parametrically by equa-
tion (96), the surface displacement, the horizontal velocity, and the stream function are
known as functions of x and y. The solution for ¢, U, V, and Y depend on the wind
shear stress 'rw, the friction depth d, the bottom depth h(x,y), the basin radius, the
island diameter (xa - xb)/r, and the eccentricity of the island defined as (xa + xb) /2r.
The magnitude of the wind stress ,'rw’ enters only as a normalizing parameter in the
solutions. Table I contains a list of the various solutions for which results are given
herein.

The bottom topography with an island diameter of 0. 5, island eccentricity of 0,

h/d = 1. 0 at the mainland shore, and h/d = 0.5 at the island is shown in figure 7(a).
This topography includes the main effects due to an island. In an actual basin without an
island, the depth is smallest at the mainland shore and largest at some central interior
point. Islands create local areas in the interior of the basin where the depth becomes
shallow. The topography shown in figure 7(a) will therefore give the local effect due to
the island.
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TABLE I. - CIRCULAR BASIN SOLUTIONS

Figure Depth ratio, h/d Island Island |7/
number At tond | A eccentricity, | diameter,
mainlan t island
(x, +x.)/r) | (x, - r
shore shore a’ " a xb)/
7 1.0 0.5 0 0.50 i
8 1.0 .5 .5 .50 i
9 1.0 .5 .5 .50 1.0
10 1.0 .5 0 .25 i
11 3.0 .5 0 .50 i
12 .5 1.0 0 .50 i
13 .5 3.0 0 .50 i
14 .5 3.0 0 .25 i
15 .5 1.0 .5 .50 1.0
16 .5 1.0 i
17 .5 3.0 1.0
18 .5 3.0 i
19 3.0 .5 1.0
20 3.0 .5 i

The surface displacement caused by a wind in the positive y-direction for the bottom
topography depicted in figure 7(a) is shown in figure 7(b). Gedney (ref. 2) has shown that
the solution for a constant depth basin is the same whether or not an island is present.

As is well known, the surface displacement solution for a constant depth basin is a plane
inclined to the horizontal. The deviation of the surface displacement shown in figure 7(b)
is then the effect of the variations in bottom depth. Although the deviations of the surface
displacement from an inclined plane are small, they will have major effects in the local
velocities.

The horizontal volume flow stream function is shown in figure 7(c) for the case under
discussion. The stream function plot consists of two gyres; the gyre to the right of the
wind is rotating clockwise and the one to the left of the wind is rotating counterclockwise.
The two gyres are separated by a dividing streamline, which in this case has a value of
zero. The value of Y on both the island and mainland shores is zero, and the zero
streamline in the interior has been twisted relative to the wind in a clockwise direction.

As shown inthe i plots in reference 2, the dividing streamline for a dish shaped
basin whose depth increases monotonically from the shore to some interior point always
runs through the maximum depth point. If the depth decreases monotonically from the
shore to an interior point, the dividing streamline would run through the minimum depth
point. In the case of the island shown in figure 7(c), the zero streamline runs through
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the minimum depth point interior to the mainland shore which happens to be the island
boundary. If the island was not placed at the minimum depth point, the i/ value on the
island boundary would assume some other value; that is, the path of the streamline divid-
ing the two gyres is determined primarily by the extremes in the bottom topography.

The horizontal velocities at £/d = 0, -0. 125, -0.250, -0. 375, and -0.500 are shown
in figures 7(d) to (h). The magnitude of each velocity vector plotted can be determined
from the scale included on the plot. The origin of the velocity vector is the position at
which velocity is actually occurring. The velocities at the surface are skewed to the
right of the wind mainly because of the Coriolis force. Local perturbations in the sur-
face velocities due to the volume flow gyres are evident. The acceleration of the veloc-
ities around the island and the deceleration near x = -1 and +1 can be directly attributed
to the volume flow gyres shown in figure 7(c). At £/d = -0. 125 mass is still being trans-
ported in the direction of the wind but an inereasing amount is being transported to the
right of the wind. The flow acceleration around the island is still evident, At
£/d = -0. 25 the flow pattern is very similar to that of the integrated volume flow shown
in figure 7(c). Return flow opposite to the wind direction is now occurring. The flow
near the island is predominately tangent to it. At £/d = -0.375 and -0. 50 there is much
return flow opposite in direction to the top surface layer flow. The flow below
¢/d = -0. 50 is very similar in direction but decreases in magnitude from that shown at
£/d = -0.50. This general flow pattern where mass in the top surface layer is trans-
ported in the direction of and to the right of the wind and returned in the opposite direc-
tion in the bottom layer is the dominant pattern in shallow lakes. The variations in this
general pattern are due to the particular bottom topography. For this particular case
where the bottom slopes upwards at the island an acceleration of flow occurs around the
island.

The effect of offsetting the island relative to the center of the basin is shown in fig-
ure 8. The bottom topography, as shown in figure 8(a), has the same values at the main-
land and island as the previous case but the center of the island is at x/r = 0.5. The
wind direction and island diameter are the same for the two cases shown in figures 7
and 8. The effect of the eccentricity on the stream function is clearly shown in fig-
ure 8(c). The zero streamline still runs around the island shore since this is still the
shallowest point in the lake. The gyres though no longer symmetric still have the same
overall behavior as the concentric island case. Comparing the velocity plots shown in
figures 8(d) to (h) with the ones in figure 7 shows that the flow patterns are essentially
the same type for both cases. Making the island eccentric has the main effect of locally
contracting and expanding the patterns for the concentric island case.

Figure 9 gives the results for an island diameter of 0.5, an eccentricity of 0.5,

h/d = 1. 0 at the mainland shore, h/d = 0.5 at the island shore, and with the wind along
the x-axis. In the concentric island case the bottom topography is independent of the
angle about the origin of the x,y axes. As a result, the solutions for any two wind
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directions are the same except rotated by the difference in wind angles. Therefore, it is
possible to compare the results shown in figure 7 with those in figure 9 to determine the
effect of an eccentric island when the wind is along the x-axis. As in the case where the
wind is in the direction of the y-axis, the effect of locating the island eccentrically when
the wind is along the x-axis is to cause a local contraction and expansion of the patterns
which occur in the concentric island case.

The effect of change in island size can be seen by comparing figure 7 and figure 10.
The results shown in these figures are for the same parameters except the island diam-
eter is 0.5 in the case of figure 7 and 0. 25 in the case of figure 10. The bottom topog-
graphies for these two cases are very nearly the same when plotted against distance from
the island shore. As a result, for points equidistant from the island shore the velocities
in the two cases are very nearly the same in magnitude and direction. This just illus-
trates again the importance of bottom topography.

The combined effect of making the basin deeper and the bottom slopes greater is
demonstrated in figure 11. Here h/d = 3.0 at the mainland shore, and h/d = 0. 50 at the
island as shown in figure 11(a). Figure 11(b) shows first that the average surface dis-
placement slope is much smaller than for the case shown in figure 7(b). This, of course,
is because the basin shown in figure 11 has a greater average depth than the basin shown
in figure 7. However, the surface displacement perturbation due to the change in bottom
depth are much greater in figure 11(b) than figure 7(b). This effect is due to the larger
bottom slopes in the case shown in figure 11.

The effects of larger depths and bottom slopes on the stream function can be deter-
mined by comparing figures 11(c) and 7(c). First, the zero streamline is twisted clock-
wise relative to the wind by a much greater angle in the case shown in figure 11(c). Sec-
ond, the value of the stream function gradients are much greater in figure 11(¢), creating
larger volume flows.

The stream function effects just mentioned produce the major differences between
the flow velocities in figures 11(d) to (h) from those in figures 7(d) to (h). Because the
zero streamline in figure 11 is more perpendicular than parallel to the wind, the flow
near the surface and bottom are more alined to the horizontal axis than in figure 7. Also
in figure 11 there is a greater acceleration of velocities around the island.

When the sign of the bottom slope (dh/9x, 2h/dy) is reversed, we can expect a signif-
icant change. In figure 12, the results are given for h/d = 0.5 at the mainland shore,
h/d = 1. 0 at the island, eccentricity = 0 and island diameter = 0.5. The average surface
displacement slope in figure 12(b) is greater than in figure 7(b) because the average depth
in the case shown in figure 12 is less than in the case shown in figure 7. There are dif-
ferences in the deviations from a constant slope surface displacement between the two
cases although they are not easily discernible.

The effect of changing the sign of the bottom slope can be more readily seen by com-
paring the stream function plots in figures 12(c) and 7(c). When for x < 0 9h/0x is
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positive as in the case of figure 12 the zero streamline is rotated counterclockwise in-
stead of clockwise as in figure 7(c). The resulting effect on the flow velocities are easily
seen in figures 12(d) to (h). The rotation of the zero streamline relative to the wind in a
counterclockwise direction is characteristic of many basins where the depth increases
from the mainland shore to an interior point. For example reference 2 shows this effect
for a rectangular basin without an island. As we found previously, the amount of rotation
of the zero streamline depends on the depth of the basin and bottom topography slopes.
The streamline patterns for h/d = 0.5 at the mainland and h/d = 3.0 at the island are
shown in figures 13(c) and 14(c), respectively, for island diameters of 0.5 and 0. 25.
Near the islands, the zero streamline for these cases have been twisted counterclockwise
considerably more than in the case shown in figure 12(c¢). This local increase in rotation
is due to the large bottom slopes near the islands as shown in figures 13(a) and 14(a) as
compared with the ones in figure 12(a).

Other cases noted in table I are also included for the interested reader but are not
discussed.

CONCLUDING REMARKS

An analytical solution has been obtained for the wind-driven circulation in a shallow
lake containing an island. The effect of an eccentric circular island in a circular lake
where the bottom depth is decreasing from the mainland shore to the island is shown.
This island effect is contrasted with the more usual case where the bottom depth in-
creases from the mainland shore to some interior point. The island effect is shown to
produce a completely different volume flow pattern (here the volume flow refers to the
vertically integrated velocities). These volume flow patterns result in unusual velocity
patterns that include the acceleration of flow near the island shore.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, August 6, 1971,
129-01,
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APPENDIX - SYMBOLS

function of h/d given by eq. (2)
mapping parameter defined by eq. (94)
function of h/d given by eq. (2)

function of h/d defined in eq. (5) or distance along mainland shore

mainland shore line

contour of integration in T-plane
function of h/d defined in eq. (5)
Ekman friction depth, 77(2 v/fc)l/ 2
functions of h/d defined in eq. (6)
functions of h/d defined in eq. (13)
defined by eq. (28)

function defined by eq. (22)

Coriolis parameter

acceleration due to gravity

defined in eq. (19)

value of H at lake or sea mainland shore
depth of lake or sea

defined in eq. (75)

imaginary part

defined in eq. (67)

defined in eq. (84)

defined by eq. (66)

constants of integration

constant defined in eq. (92)

integer

unit normal to boundary of sea or lake
x- and y-components of n

constants defined in eq. (34)




Q Q) +iQy = ¥ .1 ¥

Ql’ Q2 x- and y-cogponez{;s of volume flow

Ro radius of outer circle in T-plane

Re real part

Res residue

r radius of mainland shore for circular lake

ry radius of circular island

S distance along island shore line

14 island shore line

So» Sq constants defined in eq. (34)

T e

t dummy variable of integration

U x-component of horizontal velocity

u harmonic function of x and y

ug u-coordinate of boundary of rectangle in w-plane
y-component of horizontal velocity

v harmonic conjugate of u

w complex function u + iv

X coordinate of lake surface plane

X5 %y, x-coordinates of island boundary points

y coordinate of lake surface plane
transformed dependent variable

Z X + iy

a,B defined in eq. (21)

Pn(u), yn(u) Fourier coefficients defined in eq. (44)

5 parameter in depth distribution, eq. (53)
¢ displacement of sea or lake surface

n dummy variable

Ay eigenvalue defined in eq. (64)

v coefficient of vertical eddy diffusivity
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(0) (1) (2)
QL0 ,0y
wy, (u; €)
Subscripts:
u,v

X,y

Superscript:

*
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vertical distance measured upwards from water surface
VIR

defined in terms of wind stress by eq. (9)

w - W
7'1 +17'2

+ ig

X,y components of wind stress divided by density
stream function for the volume flow Q

Fourier coefficient defined by eq. (41)

defined by eqs. (85) and (91)

defined in eq. (68)

partial derivative

partial derivative

denotes complex conjugate
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Figure 1. - Lake (sea) - island configuration.

47



—»
Figure 2. - Annular region in T-plane.
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Figure 3. - Cut annular region in T-plane. : L
Figure 4. - Rectangular region in W-plane.
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Figure 5. - Cut lake (sea) configuration.

Figure 6. - Circular lake and island configuration.
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Figure 7. - Circular basin circulation. Island eccentricity = 0; island diameter = 0.5 h/d = 1,0 at mainiand shore; hid = 0.5 at island; 'r“’/|rw| =i
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Figure 8. - Circular basin circulation. Island eccentricity = 0. 5 island diameter = 0.5 h/d = 1.0 at mainland shore; hid = 0.5 at island; rWI|TW| =i
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{c) Nondimensional stream function 2rf yi{t%] .

Figure 9. - Circular basin circulation, Island eccentricity = 0.5 island diameter = 0. 5; h/d = 1.0 at mainland shore; h/d = 0.5 at island; T“’I|TW| =1.0.
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Figure 10. - Circular basin circulation. Island eccantricity = 0; island diameter = 0.25 h/d = 1,0 at mainland shore; hid = 0.5 at islandg; tV/|™) = i.
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Figure 12. - Circular basin circulation. Island eccentricity = 0; island diameter = 0.5 h/d = 0.5 at mainland shore; hid = 1.0 at island; rwlj'cw, =0,
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Figure 16. - Circular basin circulation. Island eccentricity = 0.5; island diameter = 0.5 h/d = 0.5 at mainland shore; hfd = 1.0 at island; twl|TW[ =i
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Figure 16, ~ Concluded.
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Figure 17. - Circular basin circulation. Island eccentricity = 0.5 island diameter = 0.5 hi/d = 0.5 at mainland shore; hi/d = 3.0 at islang; TWIITWI= 1.0.
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Figure 19. - Circular basin circulation. Island eccentricity = 0.5 island diameter = 0.5 h/d = 3.0 at mainland shorg; h/d = 0.5 at island; TWI|TW| =1.0.
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Figure 19. - Concluded.
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Figure 20. - Circular basin circulation. Island eccentricity = 0.5 island diameter = 0.5 h/d = 3.0 at mainland shore; R/d = 0,5 at island; TWI|TW| =i,
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